FORMAL TOTAL SYNTHESES OF CROCACIN A-D

Magnus Besev, Christof Brehm and Alois Fürstner ${ }^{1, *}$
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany;
e-mail: ${ }^{1}$ fuerstner@mpi-muelheim.mpg.de

Received May 12, 2005
Accepted June 14, 2005

A concise route to the common polyketide fragment 5 of crocacin A-D (1-4) is presented which has previously been converted into all members of this fungicidal and cytotoxic family of dipeptidic natural products by various means. Our synthesis features a syn-selective titanium aldol reaction controlled by a valinol-derived auxiliary, a zinc-mediated, palladiumcatalyzed anti-selective addition of propargyl mesylate $\mathbf{1 0}$ to the chiral aldehyde $\mathbf{9}$, as well as a comparison of palladium-catalyzed Stille and Suzuki cross-coupling reactions for the formation of the diene moiety of the target.
Keywords: Aldol reaction; Alkyne; Cross-coupling reactions; Natural product synthesis; PalIadium; Polyketides.

Bioassay-guided fractionation of the culture broths of different strains of the myxobacteria Chondromyces crocatus and C. pediculatus led to the isolation of the structurally rather unusual metabolites crocacin A-D (1-4) which exhibit promising biological activities (Scheme 1) ${ }^{1,2}$. M ost notable is their effective growth inhibition of various fungi and yeasts by interference with the electron flow in complex III of the respiratory chain². Crocacin D (4) turned out to be the most active compound in this regard, whereas crocacin C (3) devoid of the enamide moiety is virtually inactive. This in vitro ranking was confirmed by in vivo foliar spray assays against several plant pathogens. As a result, compound 4 constitutes a validated lead in the search for novel agricultural fungicides as evident from the considerable interest shown by industrial laboratories ${ }^{3,4}$. Moreover, the crocacins exhibit significant cytotoxicity, with crocacin D again being significantly more potent than its congeners $(4>1>2 \gg 3)^{5}$.
While this structure/activity profile suggests that the conspicuous (Z)-enamide present in all crocacins except the inactive $\mathbf{3}$ is necessary to elicit a biological response, this structural motif poses considerable challenges in preparative terms. In pursuit of previous work in this area ${ }^{6}$, we have developed a practical method allowing for the stereoselective forma-
tion of such labile enamides by a Peterson olefination manifold ${ }^{7}$. This highly efficient procedure was successfully applied by Chakraborty et al. to the total syntheses of crocacin A and $D^{8,9}$, while other authors pursued different routes for the transformation of $5(\mathrm{R}=\mathrm{H}$, alkyl) as the common polyketide fragment into the individual members of this interesting family of dipeptidic natural products ${ }^{10-13}$. Outlined below is a concise entry into this key building block 5 which is shorter than the previously published routes. In combination with our Peterson enamide strategy mentioned above or any of the alternative end games reported in the literature, this study represents formal total syntheses of all the crocacins known to date.

1 Crocacin $A(R=M e)$
2 Crocacin $B(\mathrm{R}=\mathrm{H})$

3 Crocacin C

4 Crocacin D

RESULTS AND DISCUSSION

Since Stille reactions ${ }^{14}$ have been extensively used in previous approaches to the crocacins ${ }^{11,12}$, we planned to use similar cross-coupling chemistry to install the diene unit of 5 (Scheme 2). To streamline the assembly process, however, it was envisaged to prepare the required stannane $\mathbf{6}$ from alkyne 8 via palladium-catalyzed hydrostannation ${ }^{15}$ rather than by olefination processes as previously described in the literature. The 1,2-anti configured centers flanking the alkyne unit in $\mathbf{8}$ can be installed by addition of an enantiomerically enriched allenylmetal species derived from propargyl mesylate $\mathbf{1 0}$ to aldehyde 9. Pioneered by Marshall et al. ${ }^{16}$, such addition reactions can either be performed with the aid of indium iodide ${ }^{17}$ or $\mathrm{Et}_{2} \mathrm{Zn}$ as promotors and catalytic amounts of $\operatorname{Pd}(0)^{18}$. High anti selectivity to-
gether with an excellent level of reagent control when applied to chiral aldehydes make this methodology ideally suited in the present context ${ }^{19}$. The precursor aldehyde $\mathbf{9}$ is readily available by a syn selective aldol reaction.

Scheme 2
With practicality issues in mind, it was decided to perform this aldol step with ester $\mathbf{1 3}$ bearing a valinol-derived auxiliary. Valinol $\mathbf{1 2}$ is not only readily available in both enantiomeric forms but is also considerably cheaper than the standard auxiliaries dominating contemporary aldol chemistry. As shown in Scheme 3, the required donor 13 can be conveniently prepared in multigram amounts from 12 in 'one pot' by successive addition of tosyl chloride and propionyl chloride in the presence of excess triethylamine. In accordance with literature precedence ${ }^{20}$, addition of the titanium enolate derived from 13 to a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of cinnamaldehyde pre-complexed with TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished the desired syn aldol product 14 in 85% isolated yield (d.r. $\approx 10: 1$, NMR); the reaction could easily be performed on a multigram scale although the yield was
slightly lower (66\%, cf. Experimental). Temporary protection of the hydroxyl group in 14 as tert-butyldimethylsilyl (TBS) ether followed by reductive cleavage of the auxiliary gave alcohol $\mathbf{1 6}$ which was oxidized with Dess-Martin periodinane ${ }^{21} \mathbf{1 7}$ to provide aldehyde 9. Slow addition of $\mathrm{Et}_{2} \mathrm{Zn}$ to a solution of $\mathbf{9}$ and the known mesylate ${ }^{22} \mathbf{1 0}$ in the presence of catalytic amounts of $\mathrm{Pd}(\mathrm{OAC})_{2}$ and PPh_{3} at $-78^{\circ} \mathrm{C}$ followed by warming of the resulting mixture to ambient temperature provided the desired alkyne 18 (d.r. >12:1) which was immediately deprotected with TBAF in THF. Both hydroxyl groups of the resulting diol 19 were simultaneously O-methylated on exposure to MeOTf and 2,6-di-tert-butyl-4-methylpyridine, affording alkyne 8 ready to be processed by hydrometalation/cross-coupling.

Scheme 3
Two different iodides 7a, 7b were chosen as suitable coupling partners for the formation of the $\alpha, \beta, \gamma, \delta$-unsaturated ester in the targeted polyketide fragment 5. Their synthesis (Scheme 4) is based on the stereoselective addition of stannylcuprate reagents ${ }^{23}$ to al kynoate $\mathbf{2 0}$ followed by tin-iodide exchange with retention of the stereochemistry at the double bond ${ }^{24}$. A 'higher order' stannylcuprate (derived from $\mathrm{Bu}_{3} \mathrm{SnLi}, \mathrm{BuLi}, \mathrm{CuCN}$) as well as a 'Gilman-type' stannylcuprate (derived from $\mathrm{Bu}_{3} \mathrm{SnLi}$ and $\mathrm{CuBr} \cdot \mathrm{SM}_{2}$) performed similarly well ${ }^{23}$.

Scheme 4

Scheme 5
With the key components in hand, the crucial cross coupling was attempted to complete the carbon skeleton of compound 5. Thus, alkyne 8 was hydrostannylated with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of catalytic amounts of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ to give the known alkenylstannane ${ }^{11} 6$ in 88% yield (Scheme 5). Although the Stille coupling of this compound with iodides of type 7 has precedence in the literature ${ }^{11,12}$, we found this transformation rather capricious and only partly satisfactory. While it proceeds rather slowly when performed with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ as precatalyst and either tris-(2-furyl)phosphine (TFP) or triphenylarsine as ligands at $40{ }^{\circ} \mathrm{C}$ in NMP or DMF, serious side reactions come into play when the temperature is raised
to $60{ }^{\circ} \mathrm{C}$. Although occasionally yields of 5 a of up to 70% have been obtained, the reproducibility was poor and the isolated yields were low in most cases (ca. 30-40\%, cf. Experimental). As we could not remedy this problem, we explored whether Suzuki coupling ${ }^{25,26}$ provides a more robust and practical solution. In fact, hydroboration of 8 with bis(siamyl)borane ((sia) ${ }_{2} \mathrm{BH}$) followed by palladium catalyzed reaction with iodide 7b gave fully functional polyketide fragment $\mathbf{5 b}$ in a well reproducible and satisfactory yield (79\%). At this point, the tentative stereochemical assignments made above for the chiral centers formed in the aldol- and the allenylzinc addition steps could be confirmed by comparison of the spectroscopic properties of compounds 5 and $\mathbf{6}$ with literature data ${ }^{10-12}$. Moreover, the ${ }^{1}$ H NMR pattern signature of product $\mathbf{5 b}$ is distinctly different from that of its 9 -epimer 23 which was prepared by an independent route (cf. Table I) ${ }^{27}$. Since various alkyl esters of fragment 5 have previously been converted into the individual members of the crocacin family (notably by application of our Peterson enamide manifold) ${ }^{7}$, the novel route outlined above comprising only 9 steps in the longest linear sequence constitutes an effective formal synthesis of each of these interesting bioactive targets.

Table I
Characteristic ${ }^{1} \mathrm{H}$ NMR data ($\delta, \mathrm{ppm}(\mathrm{J}, \mathrm{Hz})$) of crocacin $\mathrm{C}(\mathbf{3})^{12 \mathrm{~b}}$, ester $\mathbf{5 b}$ and its 9-epimer $\mathbf{2 3}{ }^{27}$

Position	$\mathbf{3}$	$\mathbf{5 b}$	$\mathbf{2 3}$
7	$3.17(\mathrm{dd}, 9.7,2.0)$	$3.17(\mathrm{dd}, 9.8,2.3)$	$3.04(\mathrm{dd}, 8.3,3.0)$
$7-\mathrm{OMe}$	$3.51(\mathrm{~s})$	$3.52(\mathrm{~s})$	$3.44(\mathrm{~s})$
8	$1.55(\mathrm{~m})$	$1.40-1.50(\mathrm{~m})$	$1.98-2.07(\mathrm{~m})$
9	$4.08(\mathrm{ddd}, 7.3,2.6,1.1)$	$4.06(\mathrm{ddd}, 7.2,2.5,1.1)$	$3.88(\mathrm{ddd}, 8.3,5.3,0.7)$

EXPERIMENTAL

All reactions were carried out under Ar in flame-dried glassware. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right), \mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}\left(\mathrm{CaH}_{2}\right), \mathrm{MeOH}(\mathrm{Mg}), \mathrm{DMF}, \mathrm{NMP}$ (Desmodur®, dibutyltin dilaurate), hexane, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers (\widetilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). All commercially available compounds (Fluka, Lancaster, Aldrich) were used as received. NMR: Spectra were recorded on a Bruker DPX 300 or AV 400 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm}\right)$. Compounds $\mathbf{1 0}^{22}, \mathbf{2 1}{ }^{24}$ and $\mathbf{7 b}{ }^{24}$ were prepared according to the cited literature procedures.

2-(Trimethylsilyl)ethyl (E)-3-Iodobut-2-enoate (7a)

$\mathrm{Bu}_{3} \mathrm{SnH}(1.74 \mathrm{~g}, 5.98 \mathrm{mmol})$ was added to a solution of freshly prepared LDA (5.98 mmol) in THF (10 ml) at $-40^{\circ} \mathrm{C}$ and the resulting mixture was stirred at that temperature for 60 min . The mixture was diluted with THF (40 ml) before $\mathrm{CuBr} \cdot \mathrm{SM}_{2}(1.23 \mathrm{~g}, 5.98 \mathrm{mmol})$ was introduced and stirring was continued for 10 min . The resulting dark red solution was cooled to $-78{ }^{\circ} \mathrm{C}$ before 2-(trimethylsilyl)ethyl but-2-ynoate ($848 \mathrm{mg}, 4.60 \mathrm{mmol}$) was injected. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h before it was quenched at that temperature with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was warmed to ambient temperature, diluted with tert-butyl methyl ether, and the combined organic layers were repeatedly extracted with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ until the aqueous phase was colorless. Evaporation of the solvent followed by flash chromatography of the residue (hexane/EtOAc, 30:1) gave stannane 21a, which was immediately used in the next step ($1.2 \mathrm{~g}, 55 \%$).

A solution of $\mathrm{I}_{2}(790 \mathrm{mg}, 3.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise to a solution of this stannane ($987 \mathrm{mg}, 2.08 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction was quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$, the organic layer was dried over MgSO_{4}, the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc, 50:1) to give iodide 7a as a colorless syrup ($547 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 6.56 ($\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=1.4$); $4.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.9$); $2.93(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.4$); 0.96 (d, $2 \mathrm{H}, \mathrm{J}=3.9$); $-0.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 165.8, 133.2, 121.6, 64.2, 32.5, 18.8, 1.5.

(R)-3-M ethyl-2-(tosylamino)butyl Propionate (13)

p-Toluenesulfonyl chloride ($3.81 \mathrm{~g}, 20 \mathrm{mmol}$) was added in portions to a solution of (R)-valinol (12) ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(5.6 \mathrm{ml}, 40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. Once TLC control showed complete consumption of the starting material, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and additional $\mathrm{Et}_{3} \mathrm{~N}(2.8 \mathrm{ml}, 20 \mathrm{mmol})$ was introduced. Propionyl chloride ($4.44 \mathrm{ml}, 51 \mathrm{mmol}$) was then added and stirring continued overnight. Quenching of the reaction with aqueous saturated NaHCO_{3} followed by a standard extractive work-up and flash chromatography (EtOAc/hexanes, 1:4 \rightarrow 1:1) gave analytically pure 13 (5.12 g, 82\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.76 (d, $2 \mathrm{H}, \mathrm{J}=8.1$); 7.29 (d, $2 \mathrm{H}, \mathrm{J}=8.1$);
4.93 (d, $1 \mathrm{H}, \mathrm{J}=8.8$); 4.03 (dd, $1 \mathrm{H}, \mathrm{J}=6.1,11.1$); 3.90 (dd, $1 \mathrm{H}, \mathrm{J}=4.6,11.1$); 3.35-3.26(m, 1 H); $2.42(\mathrm{~s}, 3 \mathrm{H}) ; 2.22-2.10(\mathrm{~m}, 2 \mathrm{H}) ; 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}) ; 1.06(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3) ; 0.90-0.80$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.3, 143.3, 138.2, 129.6, 127.0, 63.8, 58.0, 30.0, 27.2, 21.5, 18.9, 18.2, 8.9. IR (neat): 3281, 2964, 2877, 1738, 1598, 1495, 1463, 1390, 1325, 1183, 1160, 1087, 1042, 1020, 974, 813, 707, 665. MS (EI), m/z (\%): 270 (33), 239 (3), 226 (100), 214 (20), 196 (6), 157 (9), 139 (25), 98 (15), 91 (69), 65 (10), 57 (25). HR-MS (CI): $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{SO}_{4} \mathrm{~N}+\mathrm{Na}\right.$] calculated 336.12455, found 336.12471.
(R)-3-M ethyl-2-(tosylamino)butyl (2R,3S,4E)-3-Hydroxy-2-methyl-

5-phenylpent-4-enoate (14)
TiCl_{4} ($1 \mathrm{~mol} \mathrm{l}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.1 \mathrm{ml}$) was added to a solution of compound $\mathbf{1 3}$ (317 mg , 1.01 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After 10 min , (iPr) ${ }_{2} \mathrm{NEt}(520 \mu \mathrm{l}, 3 \mathrm{mmol})$ was added dropwise and stirring was continued at that temperature for 1 h . In a separate flask, a solution of $\mathrm{TiCl}_{4}\left(1 \mathrm{~mol} \mathrm{l}^{-1}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{ml}\right)$ was added dropwise to a solution of aldehyde $\mathbf{1 1}$ ($264 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min before the solution of the enolate derived from 13 was slowly added via canula over 30 min . The reaction was allowed to stir at that temperature for 90 min before it was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. After warming to ambient temperature, the aqueous layer was repeatedly extracted with tert-butyl methyl ether, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the crude product purified by flash chromatography with pentane/ether as eluent to afford product 14 as a highly viscous oil ($379 \mathrm{mg}, 85 \%$). When the same reaction was performed using 3.76 g of ester $\mathbf{1 3}$, aldol 14 was obtained in 66% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3$); 7.41-7.20 (m, 7 H); $6.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 16.0); 6.16 (dd, 1 H, J = 6.3, 16.0); 5.28 (d, 1 H, J = 9.1); 4.64-4.58 (m, 1 H); 4.08 (dd, 1 H, J = 5.6, 11.6); 3.95 (dd, $1 \mathrm{H}, \mathrm{J}=4.3,11.6$); 3.34-3.26 (m, 1 H); 2.96 (bs, 1 H); 2.61 (dq, 1 H , J = 4.0, 7.1); 2.39 (s, 3 H); 1.77 (oct., $1 \mathrm{H}, \mathrm{J}=7$); 1.16 (d, $3 \mathrm{H}, \mathrm{J}=7$); 0.82 (d, $3 \mathrm{H}, \mathrm{J}=7$); 0.79 (d, $3 \mathrm{H}, \mathrm{J}=7$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.8, 143.3, 138.1, 136.4, 131.5, 129.6, 128.7, $128.5,127.7,126.9,126.5,72.8,64.0,57.9,45.1,30.0,21.5,18.8,18.4,10.9$. IR (neat): 3498, 3284, 3060, 2966, 1733, 1598, 1578, 1495, 1450, 1326, 1161, 1063, 969, 815, 751, 667. MS (EI), m/z (\%): 445 (3), 427 (2), 402 (31), 313 (30), 290 (10), 270 (6), 258 (15), 226 (100), 214 (17), 196 (3), 189 (8), 188 (12), 184 (54), 172 (14), 171 (19), 160 (41), 155 (78), 144 (6), 143 (20), 139 (12), 133 (28), 132 (10), 131 (18), 115 (10), 104 (11), 103 (9), 91 (85), 86 (11), 55 (13). HR-MS (CI): [C $\left.2_{24} \mathrm{H}_{31} \mathrm{SO}_{5} \mathrm{~N}+\mathrm{Na}\right]$ calculated 468.18207, found 468.18237.
(R)-3-M ethyl-2-(tosylamino)butyl (2R,3S,4E)-3-[(tert-butyldimethylsilyl)oxy]-2-methyl-5-phenylpent-4-enoate (15)
tert-Butyldimethylsilyl triflate ($1.24 \mathrm{ml}, 5.39 \mathrm{mmol}$) was slowly added to a solution of aldol 14 ($1.6 \mathrm{~g}, 3.59 \mathrm{mmol}$) and 2,6-lutidine ($840 \mu \mathrm{l}, 7.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 45 min and at ambient temperature for 1 h , the mixture was diluted with aqueous saturated NaHCO_{3}, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ pentane gradient) to give product 15 as a syrup ($1.94 \mathrm{~g}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.74 (d, $2 \mathrm{H}, \mathrm{J}=8.1$); 7.36-7.20 (m, 7 H); 6.46 (d, $1 \mathrm{H}, \mathrm{J}=15.9$); 6.09 (dd, $1 \mathrm{H}, \mathrm{J}=7.1,16.2$); 4.78 (d, $1 \mathrm{H}, \mathrm{J}=9.1$); $4.40(\mathrm{t}, 1 \mathrm{H}$, J = 7.1); 3.92-3.84 (m, 2 H); 3.27-3.19 (m, 1 H); 2.47-2.38 (m, 1 H$) ; 2.40$ (s, 3 H); 1.73 (oct., $1 \mathrm{H}, \mathrm{J}=7.0$); 1.14 (d, $3 \mathrm{H}, \mathrm{J}=7$); $0.88(\mathrm{~s}, 9 \mathrm{H}) ; 0.78$ (d, $3 \mathrm{H}, \mathrm{J}=7$); 0.72 (d, $3 \mathrm{H}, \mathrm{J}=7$); 0.02
(s, 3 H$) ;-0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.1,143.3,138.2,136.5,130.9,130.6$, 129.6, 128.6, 127.7, 127.0, 126.4, 75.0, 63.9, 57.9, 47.1, 29.7, 25.8, 21.5, 18.9, 18.1, 12.4, -4.0, -5.0. IR (neat): 3282, 3027, 2958, 2930, 2884, 2857, 1737, 1599, 1578, 1495, 1450, 1329, 1252, 1162, 1093, 1063, 970, 836, 814, 777, 747, 694, 667, 551. MS (El), m/z (\%): 502 (8), 314 (9), 274 (2), 263 (3), 249 (3), 247 (64), 242 (5), 240 (82), 228 (4), 184 (100), 171 (9), 155 (37), 91 (26), 75 (10), 73 (25). $\mathrm{HR}-\mathrm{MS}(\mathrm{CI}):\left[\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{SiSO}_{5} \mathrm{~N}+\mathrm{Na}\right.$] calculated 582.26854, found 582.26843.
(2S,3S,4E)-3-[(tert-Butyldimethylsilyl)oxy]-2-methyl-5-phenylpent-4-en-1-ol (16)
Finely powdered $\mathrm{LiBH}_{4}(958 \mathrm{mg}, 44 \mathrm{mmol})$ and $\mathrm{MeOH}(1.8 \mathrm{ml}, 44 \mathrm{mmol})$ were added to a solution of compound 15 ($4.42 \mathrm{~g}, 7.90 \mathrm{mmol}$) in THF (80 ml) and the resulting mixture was stirred overnight at ambient temperature. Standard extractive work-up followed by flash chromatography (acetone/hexanes, 1:4) gave alcohol 16 as a colorless syrup ($2.16 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR (400 M Hz, CDCl_{3}): 7.70-7.36 (m, 2 H); 7.35-7.30 (m, 2 H); 7.27-7.22 (m, 1 H); 6.54 (d, $1 \mathrm{H}, \mathrm{J}=15.9$); 6.25 (dd, $1 \mathrm{H}, \mathrm{J}=6.8,15.9$); 4.43 (ddd, $1 \mathrm{H}, \mathrm{J}=1.3,4.0,6.8$); 3.72 (dd, $1 \mathrm{H}, \mathrm{J}=8.8,10.9$); 3.53 (dd, $1 \mathrm{H}, \mathrm{J}=4.3,10.9$); $2.83(\mathrm{bs}, 1 \mathrm{H}) ; 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}) ; 0.92(\mathrm{~s}$, $9 \mathrm{H}) ; 0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1) ; 0.11(\mathrm{~s}, 3 \mathrm{H}) ; 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 136.8$, 131.1, 129.4, 128.6, 127.6, 126.4, 77.2, 65.8, 41.4, 25.8, 18.1, 12.4, -4.3, -5.1. IR (neat): 3412, 3027, 2956, 2929, 2884, 2857, 1600, 1578, 1495, 1472, 1462, 1449, 1254, 1092, 1032, 969, 835, 776, 745, 693, 671. MS (El), m/z (\%): 249 (11), 248 (18), 247 (82), 207 (19), 157 (14), 145 (100), 142 (7), 129 (23), 128 (8), 117 (17), 115 (21), 91 (13), 75 (77), 73 (66). HR-MS (CI): $\left[\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{SiO}_{2}+\mathrm{Na}\right.$] calculated 329.19128, found 329.19135.
(2R,3S,4E)-3-[(tert-Butyldimethylsilyl)oxy]-2-methyl-5-phenylpent-4-enal (9)
Dess-M artin periodinane $17(2.53 \mathrm{~g}, 5.97 \mathrm{mmol})$ was added in portions to a solution of alcohol 16 ($916 \mathrm{mg}, 2.99 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ and pyridine (2.2 ml) and the resulting mixture was stirred at ambient temperature for 7 h . The reaction was quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{SO}_{3} / \mathrm{NaHCO}_{3}$, the aqueous phase was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1) to give aldehyde 9 as a colorless oil (792 mg, 87\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.81$ (d, $1 \mathrm{H}, \mathrm{J}=1.3$); 7.38-7.30 (m, 4 H); 7.28-7.22 (m, 1 H); 6.58 (d, $1 \mathrm{H}, \mathrm{J}=15.9$); 6.18 (dd, $1 \mathrm{H}, \mathrm{J}=6.8,15.9$); 4.72 (ddd, $1 \mathrm{H}, \mathrm{J}=$ 1.3, 4.3, 6.8); 2.56 (ddq, $1 \mathrm{H}, \mathrm{J}=1.3,4.3,7.1$); 1.13 (d, $3 \mathrm{H}, \mathrm{J}=7.1$); $0.90(\mathrm{~s}, 9 \mathrm{H}) ; 0.08$ (s, $3 \mathrm{H}) ; 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 204.6,136.5,131.2,129.7,128.6,127.8$, 126.5, 73.5, 53.0, 25.8, 18.2, 8.5, -4.1, -5.0. IR (neat): 3027, 2956, 2930, 2885, 2857, 2710, 1727, 1600, 1578, 1495, 1472, 1462, 1449, 1361, 1253, 1091, 1071, 1033, 969, 837, 778, 746, 693. MS (El), m/z (\%): 249 (6), 248 (21), 247 (100), 189 (20), 171 (4), 155 (4), 131 (11), 129 (80), 128 (9), 117 (15), 116 (12), 115 (98), 91 (12), 85 (12), 75 (42), 73 (64). HR-MS (CI): $\left[\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{SiO}_{2}+\mathrm{H}\right]$ calculated 305.19368, found 305.19362.
(3S,4S,5R,6S,7E)-6-[(tert-Butyldimethylsilyl)oxy]-3,5-dimethyl-
8-phenyloct-7-en-1-yn-4-ol (18)
A mixture of $\mathrm{Pd}(\mathrm{OAC})_{2}(6.9 \mathrm{mg}, 0.031 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(8.9 \mathrm{mg}, 0.034 \mathrm{mmol})$ in THF $(3.5 \mathrm{ml})$ was stirred at $-78{ }^{\circ} \mathrm{C}$ for 70 min before solutions of aldehyde 9 (234 mg , $0.77 \mathrm{mmol})$ and mesylate $10(148 \mathrm{mg}, 1.00 \mathrm{mmol})$ in the minimum amount of THF each
were successively introduced. A solution of $\mathrm{ZnEt}_{2}\left(1 \mathrm{~mol} \mathrm{I}^{-1}\right.$ in THF, 2.3 ml) was then added over a period of 30 min via syringe pump and stirring was continued at $-78^{\circ} \mathrm{C}$ for 1 h before the mixture was allowed to reach ambient temperature. At that point, the reaction was rapidly quenched with chilled aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with tert-butyl methyl ether. A standard extractive work-up followed by flash chromatography furnished alkyne 18 as a colorless syrup ($200 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.42-7.37 (m, 2 H); 7.36-7.30 (m, 2 H); 7.28-7.22 (m, 1 H); 6.55 (d, 1 H, J = 16.2); 6.30 (dd, $1 \mathrm{H}, \mathrm{J}=6.8,16.2$); 4.56 (ddd, $1 \mathrm{H}, \mathrm{J}=1.0,3.0,6.6$); $4.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0) ; 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}) ; 2.63-2.56(\mathrm{~m}$, 1 H); 2.21-2.11 (m, 1 H); 2.08 (d, $1 \mathrm{H}, \mathrm{J}=2.5$); 1.31 (d, $3 \mathrm{H}, \mathrm{J}=7.1$); 0.93 (s, 9 H); 0.86 (d, $3 \mathrm{H}, \mathrm{J}=7.1$); $0.13(\mathrm{~s}, 3 \mathrm{H}) ; 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 136.7,131.4,128.7$, $128.6,127.6,126.5,84.8,78.1,75.7,70.1,43.0,30.2,25.9,18.2,17.7,12.8,-4.4,-5.1$. IR (neat): 3474, 3309, 3082, 3060, 3026, 2955, 2931, 2884, 2857, 2112, 1727, 1600, 1578, 1495, 1471, 1462, 1449, 1386, 1362, 1254, 1143, 1112, 1068, 1042, 970, 864, 836, 778, 748, 693, 633. MS (EI), m/z (\%): 301 (10), 249 (8), 248 (21), 247 (100), 209 (6), 208 (12), 207 (69), 189 (6), 173 (7), 145 (8), 129 (8), 117 (11), 115 (19), 75 (36), 73 (38). HR-MS (CI): $\left[\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{SiO}_{2}+\mathrm{Na}\right.$] calculated 381.22258, found 381.22251.
(3S,4S,5R,6S,7E)-3,5-Dimethyl-8-phenyloct-7-en-1-yn-4,6-diol (19)
A solution of compound 18 ($453 \mathrm{mg}, 1.26 \mathrm{mmol}$) in THF (10 ml) at $0{ }^{\circ} \mathrm{C}$ was treated with TBAF ($1 \mathrm{~mol} \mathrm{l}^{-1}$ in THF, 1.89 ml). After stirring for 1 h , the mixture was diluted with tertbutyl methyl ether and quenched with water. A standard extractive work-up followed by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 3: 1\right)$ gave product 19 as a colorless syrup (270 mg , $88 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.42-7.38 (m, 2 H); 7.35-7.29 (m, 2 H); 7.26-7.10 (m, 1 H); 6.67 (dd, $1 \mathrm{H}, \mathrm{J}=1.3,15.9$); 6.31 (dd, $1 \mathrm{H}, \mathrm{J}=5.8,15.9$); 4.67-4.63 (m, 1 H); 3.52 (dd, $1 \mathrm{H}, \mathrm{J}=3.3,8.3$); 2.89 (bs, 2 H); 2.78-2.70 (m, 1 H); 2.16 (d, $1 \mathrm{H}, \mathrm{J}=2.5$); 2.16-2.07 (m, $1 \mathrm{H}) ; 1.30(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1) ; 0.95(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 136.8,130.9$, 129.7, 128.6, 127.6, 126.5, 84.4, 76.8, 74.5, 71.3, 41.7, 30.4, 17.9, 12.1. IR (neat): 3380, 3298, 3082, 3059, 3026, 2975, 2935, 2909, 2878, 2112, 1599, 1578, 1495, 1449, 1383, 1333, 1144, 1112, 1063, 984, 968, 751, 695, 642. MS (EI), m/z (\%): 226 (3), 211 (5), 173 (11), 145 (12), 133 (100), 132 (17), 131 (29), 129 (10), 128 (6), 122 (6), 117 (11), 115 (26), 105 (19), 104 (23), 103 (11), 94 (10), 91 (20), 79 (24), 77 (15), 55 (24). HR-MS (CI): [C $\left.\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}+\mathrm{Na}\right]$ calculated 267.13609, found 267.13603.
(3S,4S,5R,6S,7E)-4,6-Dimethoxy-3,5-dimethyl-8-phenyloct-7-en-1-yne (8)
MeOTf ($330 \mu \mathrm{l}, 2.91 \mathrm{mmol}$) was added to a solution of compound 19 ($142 \mathrm{mg}, 0.58 \mathrm{mmol}$) and 2,6-di-tert-butyl-4-methylpyridine ($477 \mathrm{mg}, 2.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{ml})$ and the resulting mixture was stirred at ambient temperature for 72 h . The reaction mixture was extracted with aqueous $\mathrm{HCl}\left(1 \mathrm{~mol}{ }^{-1}\right.$) and water, the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 15:1) to give alkyne 8 as a colorless syrup ($100 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.43-7.39 (m, 2 H); 7.35-7.29 (m, 2 H); 7.26-7.21 (m, 1 H); 6.59 (d, 1 H, J = 15.9); 6.20 (dd, 1 H, J = 7.1, 15.9); 4.14 (dd, $1 \mathrm{H}, \mathrm{J}=1.0,7.1$); 3.57 (s, 3 H); 3.33 (s, 3 H); 3.15 (dd, $1 \mathrm{H}, \mathrm{J}=2.5,9.9$); 2.78-2.73 (m, 1 H); 2.06 (d, $1 \mathrm{H}, \mathrm{J}=2.5$); 1.99-1.91 (m, 1 H); $1.35(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1) ; 0.93$ (d, $3 \mathrm{H}, \mathrm{J}=7.1$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 136.8, 132.0, 129.2, 128.6, 127.5, 126.4, 85.1, 84.8, 80.9, 69.9, 61.4, 56.5, 42.8, 29.4, 18.3, 9.9. IR (neat): 3298, 3027, 2976, 2935, 2829, 2117, 1599, 1494, 1494, 1449, 1369, 1189, 1144, 1090, 965, 968, 750, 694, 635, 619.

MS (EI), m/z (\%): 240 (2), 225 (2), 200 (4), 187 (7), 147 (100), 115 (21), 91 (8), 75 (11). HR-MS (CI): $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{Na}\right.$] calculated 295.16740, found 295.16747.

2-(Trimethylsilyl)ethyl (2E,4E,6S,7S,8R,9S,10E)-7,9-Dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienoate (5a)

A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(186 \mu \mathrm{l}, 0.69 \mathrm{mmol})$ in THF (1 ml) was added over 30 min via syringe pump to a carefully degassed solution of alkyne $8(94 \mathrm{mg}, 0.345 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($12 \mathrm{mg}, 0.017 \mathrm{mmol}$) in THF (5 ml) and the resulting mixture was stirred for 15 min . After evaporation of all volatile components, the crude product was loaded on top of a silica gel column (deactivated by treatment with $\mathrm{Et}_{3} \mathrm{~N}$ in hexane) which was first eluted with hexanes to remove all tin impurities before the eluent was changed to hexanes/EtOAc (50:1) to give the known stannane 6 ($171 \mathrm{mg}, 88 \%$). The spectroscopic data of this sample were in full agreement with those reported in the literature ${ }^{11 \mathrm{~b}} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.20-7.40$ (m, 5 H); 6.57 (d, $1 \mathrm{H}, \mathrm{J}=16.1$); 6.17 (dd, $1 \mathrm{H}, \mathrm{J}=6.9,16.1$); 5.95 (dd, $1 \mathrm{H}, \mathrm{J}=7.2,19.0$); 5.86 (d, $1 \mathrm{H}, \mathrm{J}=19.0$); 4.10 (br d, $1 \mathrm{H}, \mathrm{J}=7.2$); 3.53 ($\mathrm{s}, 3 \mathrm{H}$); 3.34 ($\mathrm{s}, 3 \mathrm{H}$); 3.14 (dd, $1 \mathrm{H}, \mathrm{J}=$ 2.5, 10.2); 2.43-2.46 (m, 1 H); 1.63 (m, 1 H); 1.40-1.52 (m, 6 H); 1.20-1.34 (m, 12 H); 1.15 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.6$); $0.86(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.2) ; 0.85(\mathrm{t}, 9 \mathrm{H}, \mathrm{J}=7.0)$. This compound is rather Iabile, in particular to traces of acid, and was therefore used in the next step without delay.
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and tris(2-furyl)phosphine (TFP, 2 equivalents to palladium) were dissolved in NMP to give a 0.1 m catalyst solution. An aliquot of this stock solution ($150 \mu \mathrm{l}$) was added to a carefully degassed solution (5 freeze/pump/thaw cycles) of stannane 6 (171 mg, $0.303 \mathrm{mmol})$ and iodide $7 \mathrm{aa}(312 \mathrm{mg}, 1.0 \mathrm{mmol})$ in NMP (3 ml) and the resulting mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 12 h and then at $60^{\circ} \mathrm{C}$ for another 48 h . Addition of tert-butyl methyl ether followed by a standard extractive work-up and flash chromatography (hexanes/EtOAc, 30:1) gave product 5a as a colorless syrup ($45 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.42-7.37 (m, 2 H); 7.34-7.29 (m, 2 H); 7.26-7.20 (m, 1 H); 6.56 (d, 1 H , J = 15.9); 6.15 (dd, $1 \mathrm{H}, \mathrm{J}=7.3,15.9$); 6.14 (dd, $1 \mathrm{H}, \mathrm{J}=8.1,15.9$); 6.07 (d, $1 \mathrm{H}, \mathrm{J}=15.9$); 5.66 (s, 1 H); 4.21-4.15 (m, 2 H); 4.10-4.05 (d, 1 H, J = 8.5); 3.55 (s, 3 H); 3.32 (s, 3 H); 3.19 (dd, $1 \mathrm{H}, \mathrm{J}=2.3,9.9$); 2.61-2.51 (m, 1 H); $2.26(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.0) ; 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}) ; 1.19(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=6.8$); 1.02-0.96 (m, 2 H); $0.84(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1) ; 0.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): 167.4,152.4,138.0,136.8,134.0,132.0,129.2,128.6,127.6,126.4,118.3,86.4$, 81.1, 61.8, 61.5, 56.5, 42.7, 40.1, 18.7, 17.4, 13.9, 9.8, -1.5. IR (neat): 3027, 2955, 2902, 2829, 1709, 1634, 1611, 1495, 1449, 1372, 1354, 1249, 1238, 1152, 1122, 1092, 972, 860, 837, 749, 693. MS (EI), m/z (\%): 394 (2), 249 (5), 248 (4), 217 (5), 187 (7), 148 (11), 147 (100), 115 (10), 75 (32), 73 (14). HR-MS (CI): [C $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{SiO}_{4}+\mathrm{Na}$] calculated 481.27501, found 481.27486.
tert-Butyl (2E,4E,6S,7S,8R,9S,10E)-7,9-Dimethoxy-3,6,8-trimethyl-
11-phenylundeca-2,4,10-trienoate (5b)
A freshly prepared solution of (sia) ${ }_{2} \mathrm{BH}\left(0.53 \mathrm{~mol}^{-1}\right.$ in THF, $\left.1.51 \mathrm{ml}, 0.8 \mathrm{mmol}\right)$ was added to a solution of alkyne 8 ($110 \mathrm{mg}, 0.4 \mathrm{mmol}$) in THF (20 ml) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h before degassed aqueous $\mathrm{LiOH}\left(2 \mathrm{~mol} \mathrm{l}^{-1}, 2 \mathrm{ml}, 4.0 \mathrm{mmol}\right.$), iodide $\mathbf{7 b}$ $(160 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg}, 0.04 \mathrm{mmol})$ were successively added. The mixture was vigorously stirred at $40{ }^{\circ} \mathrm{C}$ for 18 h before it was quenched with chilled aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. Standard extractive work-up followed by flash chromatography (hexanes/EtOAc, 20:1) gave product 5b as a colorless oil ($130 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 7.42-7.38(m, 2 H); 7.34-7.28 (m, 2 H); 7.25-7.20(m, 1 H$) ; 6.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1)$; 6.16 (dd, $1 \mathrm{H}, \mathrm{J}=16.0,7.2$); 6.12 (dd, $1 \mathrm{H}, \mathrm{J}=15.8,7.8$); 6.06 (d, $1 \mathrm{H}, \mathrm{J}=15.8$); 5.92 (d, 1 H , J = 1.1); 4.06 (ddd, $1 \mathrm{H}, \mathrm{J}=7.2,2.5,1.1$); 3.52 (s, 3 H); 3.30 (s, 3 H); 3.17 (dd, $1 \mathrm{H}, \mathrm{J}=9.8$, 2.3); 2.60-2.50 (m, 1 H); 2.19 (d, $3 \mathrm{H}, \mathrm{J}=1.2$); 1.44 (s, 9 H); 1.50-1.40 (m, 1 H); 1.17 (d, $3 \mathrm{H}, \mathrm{J}=6.9$); 0.83 (d, $3 \mathrm{H}, \mathrm{J}=7.0$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 166.6,151.1,137.8,137.1$, $133.9,131.8,129.8,128.6,127.5,126.4,119.9,86.5,81.1,79.5,61.2,56.3,42.7,40.2,28.1$, 18.6, 13.6, 9.7.
(2E,4E,6S,7S,8R,9S,10E)-7,9-Dimethoxy-3,6,8-trimethyl-
11-phenylundeca-2,4,10-trienoic Acid (5c)
A solution of ester $5 \mathbf{5}$ ($36 \mathrm{mg}, 0.078 \mathrm{mmol}$) and TBAF ($1 \mathrm{~mol} \mathrm{l}^{-1}$ in THF, $235 \mu \mathrm{l}$) in THF (5 ml) was stirred at ambient temperature until TLC showed complete conversion of the substrate. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with aqueous $\mathrm{HCl}\left(1 \mathrm{~mol}^{-1}\right)$, the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc/HOAc, 80:20:1) to give acid 5c as a colorless syrup (24.8 mg , 89\%). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl 3): 7.42-7.36 (m, 2 H); 7.34-7.27 (m, 2 H); 7.25-7.19 (m, $1 \mathrm{H}) ; 6.56$ (d, $1 \mathrm{H}, \mathrm{J}=16.0$); 6.22 (dd, $1 \mathrm{H}, \mathrm{J}=8.4,15.8$); 6.15 (dd, $1 \mathrm{H}, \mathrm{J}=7.3,16.0$); 6.10 (d, 1 H, J = 15.8); 5.70 (s, 1 H); 4.07 (dd, 1 H, J = 8.4, 15.8); 3.54 (s, 3 H); 3.32 (s, 3 H); 3.20 (dd, $1 \mathrm{H}, \mathrm{J}=2.3,9.9$); 2.64-2.52 (m, 1 H); $2.26(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.0) ; 1.60-1.48(\mathrm{~m}, 1 \mathrm{H}) ; 1.20(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{J}=6.9$); $0.85(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.1) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.6,155.2,139.3,136.8$, $133.8,132.1,129.2,128.6,127.6,126.4,116.8,86.4,81.1,61.5,56.4,42.7,40.2,18.7,14.2$, 9.8. IR (neat): 3250, 3026, 2973, 2932, 2830, 1681, 1633, 1607, 1495, 1448, 1371, 1262, 1188, 1156, 1122, 1088, 972, 749, 694. MS (EI), m/z (\%): 294 (7), 249 (2), 217 (3), 187 (6), 147 (100), 115 (16), 91 (8), 75 (25). HR-MS (CI): [C $\left.\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}+\mathrm{Na}\right]$ calculated 381.20418, found 381.20410 .

Financial support by the Max-Planck-Society, the Fonds der Chemischen Industrie, and the Merck Research Council is gratefully acknowledged. We thank Dipl.-Ing. M. Grininger for exploratory studies on the peptide part of these target molecules.

REFERENCES AND NOTES

1. Kunze B., Jansen R., Höfle G., Reichenbach H.: J. Antibiot. 1994, 47, 881.
2. Jansen R., Washausen P., Kunze B., Reichenbach H., Höfle G.: Eur. J. Org. Chem. 1999, 1085.
3. a) Crowley P. J., Aspinall I. H., Gillen K., Godfrey C. R. A., Devillers I. M., Munns G. R., Sageot O.-A., Swanborough J., Worthington P. A., Williams J.: Chimia 2003, 57, 685; b) Godfrey C. A. R., Crowley P. J., Williams J., Swanborough J. J., Sageot O.-A.: Brit. Pat. Appl GB 2380193 A1 20030402; Chem. Abstr. 2003, 138, 261101.
4. Note that several important commercial fugicides also inhibit mitochondrial respiration in plant pathogens at complex III, cf. ref. ${ }^{3}$ and references therein.
5. The following IC_{50} values were reported in ref. ${ }^{2}$ using an assay with L 929 mouse fibroblasts: $0.06 \mathrm{mg} \mathrm{l}^{-1}(\mathbf{4}), 0.2 \mathrm{mg} \mathrm{l}^{-1}(\mathbf{1}), 40 \mathrm{mg} \mathrm{l}^{-1}(\mathbf{2}), 140 \mathrm{mg} \mathrm{l}^{-1}(\mathbf{3})$.
6. For the total synthesis of another bioactive enamide from this laboratory see: a) Fürstner A., Dierkes T., Thiel O. R., Blanda G.: Chem. Eur. J. 2001, 7, 5286; b) Fürstner A., Thiel O. R., Blanda G.: Org. Lett. 2000, 2, 3731.
7. Fürstner A., Brehm C., Cancho-Grande Y.: Org. Lett. 2001, 3, 3955.
8. Chakraborty T. K., Laxman P.: Tetrahedron Lett. 2003, 44, 4989.
9. Chakraborty T. K., Laxman P.: Tetrahedron Lett. 2002, 43, 2645.
10. a) Chakraborty T. K., Jayaprakash S., Laxman P.: Tetrahedron 2001, 57, 9461; b) Chakraborty T. K., Jayaprakash S.: Tetrahedron Lett. 2001, 42, 497.
11. a) Feutrill J. T., Rizzacasa M. A.: Aust. J. Chem. 2003, 56, 783; b) Feutrill J. T., Lilly M. J., Rizzacasa M. A.: Org. Lett. 2000, 2, 3365; c) Feutrill J. T., Lilly M. J., Rizzacasa M. A.: Org. Lett. 2002, 4, 525.
12. a) Dias L. C., de Oliveira L. G., Vilcachagua J. D., Nigsch F.: J. Org. Chem. 2005, 70, 2225; b) Dias L. C., de Oliveira L. G.: Org. Lett. 2001, 3, 3951.
13. For fragment syntheses see: a) Raghavan S., Reddy S. R.: Tetrahedron Lett. 2004, 45, 5593; b) Gurjar M. K., Khaladkar T. P., Borhade R. G., Murugan A.: Tetrahedron Lett. 2003, 44, 5183.
14. Espinet P., Echavarren A. M.: Angew. Chem., Int. Ed. 2004, 43, 4704; and references therein.
15. a) Zhang H. X., Guibé F., Balavoine G.: J. Org. Chem. 1990, 55, 1857; b) For review see: Makabe H., Negishi E. in: Handbook of Organopalladium Chemistry for Organic Synthesis (E. Negishi, Ed.), Vol. 2, p. 2789. Wiley, New York 2002.
16. Marshall J. A.: Chem. Rev. (Washington, D. C.) 2000, 100, 3163.
17. a) Marshall J. A., Grant C. M.: J. Org. Chem. 1999, 64, 696; b) Marshall J. A., Johns B. A.: J. Org. Chem. 2000, 65, 1501.
18. a) Marshall J. A., Adams N. D.: J. Org. Chem. 1999, 64, 5201; b) Marshall J. A., Schaaf G. M.: J. Org. Chem. 2001, 66, 7825.
19. For a recent application see: Lepage O., Kattnig E., Fürstner A.: J. Am. Chem. Soc. 2004, 126, 15970.
20. Ghosh A. K., Kim J.-H.: Tetrahedron Lett. 2002, 43, 5621.
21. Boeckman R. K., Shao P., Mullins J. J.: Org. Synth. 2000, 77, 141.
22. Johns B. A., Grant C. M., Marshall J. A.: Org. Synth. 2003, 79, 59.
23. Fleming I. in: Organocopper Reagents (R. J. K. Taylor, Ed.), p. 257. IRL Press, Oxford 1994.
24. Otaka A., Mitsuyama E., Kinoshita T., Tamamura H., Fujii N.: J. Org. Chem. 2000, 65, 4888.
25. a) Suzuki A.: J. Organomet. Chem. 1999, 576, 147; b) Miyaura N., Suzuki A.: Chem. Rev. (Washington, D. C.) 1995, 95, 2457.
26. For methodological contributions and applications from this laboratory see: a) Mamane V., Hannen P., Fürstner A.: Chem. Eur. J. 2004, 10, 4556; b) Fürstner A., Mamame V.: Chem. Commun. 2003, 2112; c) Fürstner A., Turet L.: Angew. Chem., Int. Ed. 2005, 44, 3462; d) Fürstner A., Leitner A.: Synlett 2001, 290; e) Fürstner A., Grabowski J., Lehmann C. W.: J. Org. Chem. 1999, 64, 8275; f) Fürstner A., Seidel G.: Synlett 1998, 161; g) Fürstner A., Seidel G.: J. Org. Chem. 1997, 62, 2332; h) Fürstner A., Konetzki I.: Tetrahedron 1996, 52, 15071; i) Fürstner A., Seidel G.: Tetrahedron 1995, 51, 11165.
27. Brehm C.: Unpublished results.
